Skip to main content Link Menu Expand (external link) Document Search Copy Copied

Quick Start

  1. Demo for Motion Capture
    1. Demo on multiple calibrated cameras
    2. Demo on monocular videos
    3. Demo on monocular+mirror videos
  2. Demo for Novel View Synthesis
    1. Demo for NeuralBody

Demo for Motion Capture

Demo on multiple calibrated cameras

Download our demo dataset here and extract the dataset. If you want to run this code on your own dataset, see Prepare Your MoCap Dataset for more details.

data=/path/to/dataset
python3 apps/demo/mocap.py ${data} --work lightstage-dense-smplh --subs_vis 01 --ranges 0 800 1

The visualization results can be found in ${data}/output-mv1p-smplh/smplmesh.mp4


Video comes from our ZJU-MoCap dataset with 19 calibrated and synchronized cameras.

Optionally, you can change the mode for other models:

Model SMPL MANO
Mode –work lightstage-dense-smpl –work lightstage-dense-manol
Results

Our method only takes 30 seconds to optimize the SMPL model of 800 frames. As rendering the results takes the longest time, you can add flag ` –disable_vismesh` to skip this.

Demo on monocular videos

Download demo dataset here and extract the dataset.

data=<path/to/data>
python3 apps/demo/mocap.py ${data} --work internet

Videos come from Youtube and Bilibili.

Download the challenging data here and extract it.

data=<path/to/data>
python3 apps/demo/mocap.py ${data} --work internet-rotate --fps 30 --render_side

Videos come from Youtube.

Demo on monocular+mirror videos

Download example dataset here and extract the dataset.

data=<path/to/data>
python3 apps/demo/mocap.py ${data} --work mirror --fps 30 --vis_scale 0.5

Videos come from Youtube.

Demo for Novel View Synthesis

Demo for NeuralBody

Download example dataset here and extract the dataset.

data=/path/to/data
# Train Neuralbody:
python3 apps/neuralbody/demo.py ${data} --mode neuralbody --gpus 0,
# Render Neuralbody:
python3 apps/neuralbody/demo.py ${data} --mode neuralbody --gpus 0, --demo

Full step of motion capture and data preparation:

# motion capture
python3 apps/demo/mocap.py ${data} --work lightstage-dense-unsync --subs_vis 01 07 13 19 --disable_crop


Table of contents