Quick Start
Please check EasyMoCap v0.3 for more details.
Demo for Motion Capture
Demo on multiple calibrated cameras
The example dataset can be download from 01_triangulate/street_dance.zip. After downloading, unzip it to the data/examples
folder.
data=data/examples/street_dance
emc --data config/datasets/mvimage.yml --exp config/mv1p/detect_triangulate_fitSMPL.yml --root ${data} --subs_vis 07 01 05 03
The results can be found in output/detect_triangulate_fitSMPL
.
Video are captured outdoors using 9 smartphones.
Our method only takes 30 seconds to optimize the SMPL model of 800 frames. As rendering the results takes the longest time, you can add flag ` –skip_vis` to skip this.
Demo on monocular videos
The example dataset can be download from 03_fitmono/internet-rotate.zip. After downloading, unzip it to the data/examples
folder.
data=data/examples/internet-rotate
emc --data config/datasets/svimage.yml --exp config/1v1p/hrnet_pare_finetune.yml --root ${data} --ranges 0 500 1 --subs 23EfsN7vEOA+003170+003670
The raw video is from Youtube.
Demo on monocular+mirror videos
Download example dataset here and extract the dataset.
data=<path/to/data>
python3 apps/demo/mocap.py ${data} --work mirror --fps 30 --vis_scale 0.5
Videos come from Youtube.
Demo for Novel View Synthesis
Demo for NeuralBody
Download example dataset here and extract the dataset.
data=/path/to/data
# Train Neuralbody:
python3 apps/neuralbody/demo.py ${data} --mode neuralbody --gpus 0,
# Render Neuralbody:
python3 apps/neuralbody/demo.py ${data} --mode neuralbody --gpus 0, --demo
Full step of motion capture and data preparation:
# motion capture
python3 apps/demo/mocap.py ${data} --work lightstage-dense-unsync --subs_vis 01 07 13 19 --disable_crop