Debug
MV1P
1. Check the datasets
Make sure that:
- The dataset is synchronized
- The 2D detections are almost right
# use the annotation tool to check the 2D keypoints
python3 apps/annotation/annot_keypoints.py ${data}
# check the dataset
python3 apps/fit/test_dataset.py --cfg_data config/data/mv1p.yml --opt_data args.path ${data} args.out ${data}/output-keypoints3d
2. Check the calibration
- Make sure that the unit of extrinsic parameter is
meter
. - Use
check_calib.py
to visualize the camera:
# this command will plot a unit cube in the origin:
python3 apps/calibration/check_calib.py ${data} --out ${data} --mode cube --write --show
# this command will read and triangulate the keypoints of the human and project it to each views.
python3 apps/calibration/check_calib.py ${data} --out ${data} --mode human --write --show
3. Check the triangulation results
The results will be stored at ${data}/output-keypoints3d
4. Check the output parameter
- If the shape is abnormal, check the
shapes
parameters.
5. Check the fitting with SMPL
# check only first 1 frames
python3 apps/demo/mocap.py ${data} --mode smpl-3d --ranges 0 1 1 --exp debug1
# check only first 10 frames
python3 apps/demo/mocap.py ${data} --mode smpl-3d --ranges 0 10 1 --exp debug10
# check only first 100 frames
python3 apps/demo/mocap.py ${data} --mode smpl-3d --ranges 0 100 1 --exp debug100