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Figure 1: Given sparse multi-view videos of human performers, our approach is able to generate high-fidelity novel views and accurate
instance masks even for crowded scenes. Please refer to the supplementary material for the synthesized free-viewpoint video.

ABSTRACT
This paper presents a novel system for generating free-viewpoint
videos of multiple human performers from very sparse RGB cam-
eras. The system reconstructs a layered neural representation of
the dynamic multi-person scene from multi-view videos with each
layer representing a moving instance or static background. Unlike
previous work that requires instance segmentation as input, a novel
approach is proposed to decompose the multi-person scene into
layers and reconstruct neural representations for each layer in a
weakly-supervised manner, yielding both high-quality novel view
rendering and accurate instance masks. Camera synchronization
error is also addressed in the proposed approach. The experiments
demonstrate the better view synthesis quality of the proposed sys-
tem compared to previous ones and the capability of producing an
∗Corresponding author.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
SIGGRAPH ’22 Conference Proceedings, August 7–11, 2022, Vancouver, BC, Canada
© 2022 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

editable free-viewpoint video of a real soccer game using several
asynchronous GoPro cameras. The dataset and code are available
at https://github.com/zju3dv/EasyMocap.
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1 INTRODUCTION
Synthesizing free-viewpoint videos of human performers is a long-
standing problem with wide applicability in immersive viewing
experience and telepresence. Unlike static scenes, reconstructing
high-fidelity human models especially in crowded scenes for novel
view synthesis faces inevitable challenges such as nonrigid motion,
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complicated appearance variation and severe occlusion due to close
interaction.

Traditional systems either adoptmulti-view stereo techniques [Col-
let et al. 2015; Guo et al. 2019] to reconstruct textured meshes
explicitly, or perform image-based rendering via view interpola-
tion [Gortler et al. 1996; Zitnick et al. 2004]. However, all of them
require a dense rig of cameras which suffer from high cost and lim-
ited mobility. To reduce the complexity of capture systems, some
works leverage the commodity depth sensors to build real-time
reconstruction systems [Dou et al. 2016; Newcombe et al. 2015; Yu
et al. 2021b, 2018], but they are inapplicable in outdoor or large-scale
scenes.

Recently, neural scene representation-based techniques [Milden-
hall et al. 2020; Niemeyer et al. 2020; Sitzmann et al. 2019] have
demonstrated superior performance in modeling scenes and syn-
thesizing photorealistic novel views, given an abundant number of
input views. This type of approach has also shown promising re-
sults in modeling humans [Lombardi et al. 2019; Wang et al. 2021a;
Zhang et al. 2021], while they still require relatively dense multi-
view videos as input. To reduce the required number of input views,
some recent works [Liu et al. 2021; Peng et al. 2021] propose to
utilize human body priors to assist the learning of human represen-
tations. For example, NeuralBody first fits an SMPL model [Loper
et al. 2015] to the input videos and then learns a set of latent codes
that are anchored on the SMPL model to represent geometry and
appearance. But these methods are limited to single-person capture.

In this paper, we aim to solve the challenging problem of novel
view synthesis of multiple closely interacting human performers
from a sparse array of calibrated and roughly synchronized RGB
cameras. The background is assumed to be static with simple ge-
ometry, e.g., a ground plane. A plausible solution to this problem is
to learn a layered scene representation in which each layer repre-
sents a human instance or background [Lu et al. 2020; Zhang et al.
2021]. However, this approach generally requires instance segmen-
tation as a preprocessing step and may suffer from inaccuracy of
instance masks especially for close interactions, as shown in Fig. 2,
which will hinder the subsequent reconstruction and rendering
quality. Instead, we propose to learn the layered scene representa-
tion and assign the image pixels into different layers simultaneously
in a weakly-supervised manner. All layers of radiance fields are
jointly learned by directly minimizing the rendering loss, i.e., the
difference between the rendered images and input images. Differ-
ent from [Zhang et al. 2021], we enforce that the color of a pixel
(ray) is contributed by only one layer. To this end, we introduce
sparsity loss and keypoint loss on the layer logits of each pixel (a
one-hot vector that indicates which layer the pixel belongs to). The
experiments show that minimizing our loss results in high-quality
reconstruction of the layered scene representation and accurate
instance masks derived from the layer logits, as demonstrated in
Fig. 1.

Two additional challenges exist in practice. The first is the multi-
camera synchronization error that causes misalignment between
the reconstructed 3D geometry and the images, resulting in blurring
and artifacts in rendering. To solve this problem, we propose a
novel pose-guided synchronization strategy to compensate for the
synchronization error. Another challenge is the moving objects.
Accurate modeling of them requires to track their 6DoF poses,

Figure 2: Instance masks given by a pretrained segmentation
network [Li et al. 2020b] (middle) and our approach (right).

which are impractical if the objects are small and fast moving. So
we only consider balls in this work andmodel each ball as a radiance
field with constant densities, time-varying colors and translational
motion across frames.

In summary, our main contributions are:

• A novel system for producing editable free-viewpoint video
of multiple performers under close interactions from very
sparse RGB cameras.

• A new algorithm that is able to decompose the multi-person
scene into human instances in a weakly-supervised manner
and reconstruct high-quality neural representations for each
instance.

• A method to address the camera synchronization error with
the guidance of human poses.

2 RELATEDWORK
Performance capture. Recently, many works aim to solve human
motion capture using RGB cameras. To recover the skeleton mo-
tion of human, some previous works propose optimization-based
solutions, solving the cross-view matching [Dong et al. 2021; Vo
et al. 2020b] or 4D graph parsing [Zhang et al. 2020a], while oth-
ers use neural networks to regress human poses directly in an
end-to-end manner [Iskakov et al. 2019; Tu et al. 2020; Wang et al.
2021b]. To capture volumetric videos of human performers, tradi-
tional paradigms require a dense array of cameras [Collet et al. 2015;
De Aguiar et al. 2008; Gall et al. 2009; Guo et al. 2019], which are
inaccessible for nonprofessionals. Others achieve impressive per-
formance with sparse depth sensors [Dou et al. 2016; Newcombe
et al. 2015; Su et al. 2020; Wu et al. 2020; Yu et al. 2021b, 2018],
which are however impractical for outdoor or large-scale scenes.
For performance capture from monocular videos, some approaches
[Habermann et al. 2019, 2020] rely on a person-specific 3D template
model and deform it through dense non-rigid tracking. Instead, our
work doesn’t need a pre-scanned person-specific template model.
Template-free methods can produce detailed humanmeshes beyond
capability of the parametric human representation by leveraging
image information such as silhouette [Natsume et al. 2019; Zhu
et al. 2019]. Some methods attempt to directly regress detailed 3D
geometry of human [Huang et al. 2018; Li et al. 2020a; Saito et al.
2019; Suo et al. 2021; Varol et al. 2018; Zheng et al. 2021, 2019] from
RGB images but may suffer from limited generalization abilities in
practice.
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Figure 3: Overview of our method. (a) Given multi-view videos, the skeletal motion of humans and rigid motion of moving objects are
first recovered. (b) The SMPL+H models [Romero et al. 2017] are fitted to the estimated skeletons and implicit neural representations of each
foreground entity and the background are jointly learned without any mask supervision. (c) The learned neural representations are able to
render images and instance masks via volume rendering, which support 360◦ novel view synthesis and content editing.

Free Viewpoint Rendering. It has been a long-standing problem
in the community to render unseen views given a few input views.
Most traditional methods use view interpolation, stereo matching,
or CNN-based image synthesis to render novel views[Bansal et al.
2020; Levoy and Hanrahan 1996; Shum and Kang 2000]. However,
they can only render novel views which are close to input views.
Representing a scene with neural implicit functions has been a high-
profile research direction recently [Lin et al. 2021; Liu et al. 2020;
Mildenhall et al. 2020; Niemeyer et al. 2020; Reiser et al. 2021; Sitz-
mann et al. 2019; Yu et al. 2021a; Zhang et al. 2020b]. The seminal
work NeRF [Mildenhall et al. 2020] models the scene as a neu-
ral radiance field and achieves realistic novel view synthesis with
volume rendering. Some works also concentrate on object repre-
sentation[Granskog et al. 2021; Guo et al. 2020; Yang et al. 2021; Yu
et al. 2022]. However, these works only focus on static scenes. Sev-
eral recent works dedicate themselves to handling general dynamic
scenes by explicitly modeling motion with rigid transformations
[Yuan et al. 2021], nonrigid deformation fields [Gao et al. 2021; Park
et al. 2021; Pumarola et al. 2021; Tretschk et al. 2021] and scene
graphs [Ost et al. 2021], or learning a time-conditioned dynamic
radiance field [Du et al. 2021; Li et al. 2021; Xian et al. 2021]. Com-
pared to these works, we aim to achieve 360◦ novel view rendering
of a scene with close human interactions from sparse input views.

Neural Representations for Humans. Neural modeling of hu-
mans has also been deeply investigated. NeuralVolume [Lombardi
et al. 2019] is among the first to learn a deep feature volume to
represent humans and achieve realistic re-rendering. PIFu [Saito
et al. 2019] learns a pixel-aligned implicit function to represent
human bodies. NeuralBody [Peng et al. 2021] establishes dense
correspondences between video frames by a fitted SMPL model
and thus allows for reconstructing NeRF from sparse multi-view

videos. MVP [Lombardi et al. 2021] proposes a hybrid representa-
tion for efficient rendering of neural avatars. Some other works
[Liu et al. 2021; Noguchi et al. 2021] attempt to learn riggable hu-
man models from videos for animation. Most of the above works
focus on modeling a single human body instead of a dynamic scene
including multiple interacting people. ST-NeRF [Zhang et al. 2021]
handles the multi-person cases with moderate number of cameras.
They propose a layered neural representation to model all entities
in the scene and adopt a deformation representation similar to D-
NeRF [Pumarola et al. 2021]. Although impressive results have been
achieved, human priors are not sufficiently utilized and instance
segmentation is required, so the rendering quality degrades in the
scenario of sparse input views and close interactions as shown in
our experiments.

3 METHODS
Fig. 3 demonstrates the pipeline of our method. Given a dynamic
scene with multiple human performers captured by sparse RGB
cameras, our goal is to generate editable free-viewpoint videos. We
first capture human skeletal motion and object motion (Sec. 3.1),
define a layered neural scene representation (Sec. 3.2) and finally
learn the representation from input videos (Sec. 3.3).

3.1 Multi-entity motion capture
Data Collection and Camera Calibration. Our capture system
only uses a few RGB cameras and thus can be used both indoors and
outdoors. The sequence shown in Fig. 1 were recorded with eight
portable GoPro cameras at 60 fps. These cameras were calibrated
using a calibration board and synchronized by manually selecting
key frames.

Detection and Matching. Given synchronized and calibrated
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multi-view videos, we deal with the humans and objects separately.
An off-the-shelf 2D human pose detector [Cao et al. 2017] and an
object detector[Redmon et al. 2016] are used to detect 2D human
keypoints and object bounding boxes for each frame respectively.
Then, we perform matching to find cross-view correspondences of
humans and objects from different views. For humans, we construct
the cross-view affinity matrix and solve the multi-view matching
problem with an existing algorithm [Dong et al. 2021]. For ob-
jects, we simply regard the center of the 2D bounding box as a
keypoint and solve the cross-view correspondences similarly. After
the matching, the 3D keypoint trajectories of each entity can be
recovered via triangulation, which are shown in Fig. 3 (a).

Parametric Model Fitting. As 2D detection results suffer from
noises and occlusions in interaction scenes, fitting a parametric
model to keypoints in the whole sequence can not only suppress
keypoint detection errors by imposing human structural constraints,
but also complete missing trajectories.

We adopt SMPL+H [Romero et al. 2017] as the parametric human
representation and fit multiple SMPL+H models to the multi-view
videos. Let 𝜽 , 𝜷 be the disentangled pose parameters and shape
parameters of the model. 𝑹 and 𝑻 are the global rotation and trans-
lation, respectively. 𝑴 (𝜽 , 𝜷, 𝑹, 𝑻 ) is a differentiable function that
maps the parameters to a mesh. J is a pre-trained linear regressor
used for generating 3D human keypoints from the mesh.

We fit the parametric model to estimated 3D keypoints. The
losses of this stage mainly consist of a 3D distance term L3d that
computes the sum of distances between the detected 3D keypoints
and their correspondences on the SMPL-H model, a regularization
term Lreg that constrains the SMPL-H parameters to be in a rea-
sonable range [Pavlakos et al. 2019], and a temporal smoothness
term Lt that penalizes the differences of parameters between con-
secutive frames. The definition of Lreg is the L2 regularization of
𝜽 and 𝜷 . Lt is the L2 regularization of the velocity of parameter
𝜽 , 𝑹, 𝑻 . The entire loss function for motion capture Lmocap is the
sum of above losses:

Lmocap = L3d + 𝜆regLreg + 𝜆tLt, (1)

The main loss is the 3d keypoints position loss:

L3d =
∑︁

𝒘3d · | |J𝑴 (𝜽 , 𝜷, 𝑹, 𝑻 ) − 𝑱 | |22, (2)

where 𝑱 and 𝒘3d are the reconstructed 3D human keypoints and
confidence scores for visibility, respectively. The summation opera-
tion is performed over all keypoints and frames.

Pose-guided synchronization. In real applications, capturing
precisely synchronized videos is usually not easy particularly for in-
the-wild scenes where hard synchronization is impractical. There-
fore, it is necessary to process asynchronous frames in advance,
otherwise the subsequent novel view synthesis may suffer from
blurring and artifacts due to the misalignment of multiple views.
The first row of Fig. 4 shows this phenomenon. Even when we
manually select the nearest frames among views, they are not con-
sistent because of the fast human motion. In order to alleviate this
problem, we propose a pose-aware synchronization strategy, which
compensates for the synchronization error by minimizing the 2D
reprojection loss [Bogo et al. 2016; Pavlakos et al. 2019] of all 𝑉

Figure 4: Misalignment caused by asynchronous devices. This
figure shows the re-projection of fitting results to different views.
The three columns show the reference, lagging and advanced
frames, respectively. As the first row shows, even we fit the model
to the 3D keypoints, there still exists misalignment in the fast mov-
ing regions (highlighted by red circles). The second row shows the
fitting results considering the synchronization. The re-projection
errors are reduced significantly (highlighted by yellow circlels).

views:

min
[Δ𝑡𝑣 ]

𝑉∑︁
𝑣=1

L2𝑑 (𝜽 + Δ𝑡𝑣 ¤𝜽 , 𝜷, 𝑹 + Δ𝑡𝑣 ¤𝑹, 𝑻 + Δ𝑡𝑣 ¤𝑻 , 𝑾𝑣, 𝒘𝑣), (3)

where 𝚫𝑡𝑣 is the temporal offset of view 𝑣 to be solved, and ¤𝜽 , ¤𝑹, ¤𝑻
are the estimated velocities of corresponding variables, which are
approximated as the difference between two adjacent frames.

Our method leverages accurate 2D human poses and is able to
achieve subframe synchronization accuracy. Finally, the optimized
independent temporal offset is applied to each view and more accu-
rate fitting is obtained, as shown in the second row of Fig. 4.

3.2 Layered neural scene representation
Our implicit neural representation follows the NeRF [Mildenhall
et al. 2020; Oechsle et al. 2021]. The color of each ray r is approxi-
mated using numerical quadrature. We sample 𝑁 points in the ray
and calculate the occupancy 𝑜 and the color 𝒄 by a neural network:

�̂� (r) =
𝑁∑︁
𝑖=1

𝑜 (𝒑𝑖 )
∏
𝑗<𝑖

(1 − 𝑜 (𝒑 𝑗 ))𝒄 (𝒑𝑖 , r). (4)

To model the whole scene including multiple independently
moving instances, we adopt a layered scene representation where
each layer is a neural radiance field representing a human, object
or background, similar to ST-NeRF [Zhang et al. 2021].

Human representation.We follow NeuralBody [Peng et al. 2021]
to leverage human motion priors. NeuralBody adopts the paramet-
ric human model SMPL [Loper et al. 2015] and defines a set of latent
codes on vertices of the SMPL model, followed by a code diffusion
process so as to obtain the latent code at any location around the
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Figure 5: Illustration of the background layer. We simplify the
background with the assumption that the actors interact in a limited
region. The ground plane of this region is known and the radius of
this region can be reasoned from the trajectories of humans. So we
just sample points around the ground plane or outside this region
(red points).

surface. Then a multilayer perceptron (MLP) maps the latent codes
to the density and color values at any queried position.

Objects representation. To accurately model general objects, one
needs to track the 6DoFmotions of objects, which is challenging and
beyond the scope of this work. Thus, in this work, we only consider
balls andmodel each ball as a radiance fieldwith time-varying colors
and translational motion across frames. The trajectory of the ball is
used as the spatial anchor when sampling the points. We convert
the points of object 𝑚 in the frame 𝑡 to canonical space by the
location 𝑻𝑚𝑡 . Specifically, given point 𝒑𝑖𝑡 , the neural representation
of this object 𝑜𝑚, 𝒄𝑚 in canonical space and the temporal latent
code of this frame 𝒍𝑡 , we calculate the density and color by

𝑜𝑚 (𝒑𝑖𝑡 ), 𝒄𝑚 (𝒑𝑖𝑡 , 𝒅) = �̂�𝑚 (𝒑𝑖𝑡 − 𝑻𝑚𝑡 ), 𝒄𝑚 (𝒑𝑖𝑡 − 𝑻𝑚𝑡 , 𝒅, 𝒍𝒕 ) (5)

Background representation. We also use NeRF [Mildenhall et al.
2020] with temporal latent codes to represent the background and
ground. As we only use 8 cameras to cover 360 degrees, compared
to 16 cameras with 180 degrees viewing range in ST-NeRF, recon-
structing the background from such sparse inputs is ambiguous.
To make the background learning better constrained and more effi-
cient, we only sample the points in a limited region, as shown in
Fig. 5. There are also shadows in the real environment. We do not
explicitly model the dynamic shadows as the lighting conditions
are unknown. Instead, we model the changing shadows as a part of
dynamic background with the temporal latent codes.

Rendering. Layered rendering [Zhang et al. 2021] is performed to
synthesize images. Specifically, for each ray, we first calculate its
intersections with each 3D bounding box. If this ray is intersected
with entity𝑚, then we uniformly sample 𝑁 points between the two
intersection points (𝒑near,𝒑far):

𝒑𝑚𝑖 = 𝒑𝑚near +
𝑖 − 1
𝑁

(𝒑far − 𝒑near), 𝑖 = 1, 2, . . . , 𝑁 . (6)

For each point 𝒑𝑚
𝑖
, it is fed into its neural network and get its

occupancy 𝑜𝑚 (𝒑𝑚
𝑖
) and color 𝒄𝑚 (𝒑𝑚

𝑖
, 𝒅). Then all the points are

merged and sorted by their depth values from near to far. The final
color is calculated by Eq. 4.

3.3 Network Training
We optimize the layered scene representation with the rendering
loss as previous methods [Mildenhall et al. 2020; Zhang et al. 2021]
do:

Lrgb =
∑︁
r∈R

�̂� (r) − 𝑪 (r)
2
2, (7)

where 𝑪 (r) and �̂� (r) are RGB colors for the ray r from the ground-
truth and volume rendering, respectively. R represents the set of
the sampled rays during training. In the multi-layer rendering, a ray
may intersect with multiple layers, which introduces ambiguities
to the above optimization problem. To enforce that only one layer
contributes to the color of a ray, we propose a sparsity regularization
term and a keypoint supervision term, as shown in Fig. 6.

Sparsity regularization. For each ray r, we suppose that 𝜶 (r) is
a vector of layer logits indicating which layer the corresponding
pixel belongs to. It is a normalized vector between 0 and 1. We can
simply replace the color 𝒄 (𝒑𝑖 , 𝒅) in Eq. 4 with the instance label
𝒍 (𝒑𝑖 ) to render the layer logits of ray r:

𝜶 (r) =
𝑁∑︁
𝑖=1

𝑜 (𝒑𝑖 )
∏
𝑗<𝑖

(1 − 𝑜 (𝒑 𝑗 ))𝒍 (𝒑𝑖 ), (8)

where 𝒍 (𝒑𝑖 ) is the one-hot vector indicating which object the scene
point 𝒑𝑖 belongs to.

If only one layer contributes to the color of a ray, it means that its
layer logits are close to 0 or 1. Therefore, we introduce an entropy
loss to regularize the layer logits:

Lent = −
∑︁
r∈R

|𝜶 (r) |∑︁
𝑚=1

𝜶𝑚 log(𝜶𝑚) . (9)

Keypoint supervision. If the accurate instance segmentation is
known, the decomposition can be achieved by making the rendered
mask close to the instance segmentation. However, the instance
segmentation given by the pretrainedmodel or rendered from SMPL
is inaccurate. Thus we additionally supervise the layer logits with
human keypoints detected in the images by minimizing:

Lkpt = −
∑︁
r∈R

𝒘 (r)∥𝜶 (r) − �̂� (r)∥, (10)

where 𝒘 (r) is the confidence score indicating whether the pixel
location traversed by the ray r corresponds to a labeled keypoint and
�̂� is the instance label of the corresponding keypoint.𝒘 (r) equals
0 for locations without keypoint annotations. As the keypoints are
very sparse, we also supervise the pixels on the lines that connect
two keypoints on each limb.

4 EXPERIMENTS
4.1 Datasets and metrics
Datasets. Since existing human datasets do not contain enough
activities involving close interactions, we created a multi-view
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Figure 6: Illustration of the sparsity regularization and key-
point supervision. For a sample ray (black line in the left image
and yellow point in the right image), it intersects with three 3D
bounding boxes. We sample points and calculate the occupancy
for all the three bounding boxes, respectively. If the occupancy
values in more that one bounding boxes are nonzero, the rendered
layer logits will not be close to 0 or 1 and penalized by the sparsity
regularization. If the occupancy values in the red bounding box are
large, the rendered instance label will also be red and penalized by
the keypoint supervision.

dataset called Multi-Human Dataset for evaluating our approach.
This dataset includes 4 dynamic scenes with different human inter-
actions performed. All sequences have more than 300 frames cap-
tured by 22 synchronized cameras.We select 8 uniformly distributed
cameras for training and 4 cameras for test. ST-NeRF [Zhang et al.
2021] provides two sequences with 16 cameras covering a view
range up to 180 degrees. The occlusion in this dataset is relatively
low. To evaluate the performance of the proposed approach on
in-the-wild data, we created a dataset called soccer, which captured
a real soccer game using 8 static GoPro cameras at 60 fps.

Metrics. Following standard practice in NeRF [Mildenhall et al.
2020], we evaluate our method with two metrics for novel view syn-
thesis: peak signal-to-noise ratio (PSNR) and structural similarity
index (SSIM). For instance segmentation, we adopt the intersection
over union (IoU) between the inferred mask and the ground-truth
mask.

4.2 Baselines
Two baseline methods are compared in our experiments. 1) The
original NeuralBody[Peng et al. 2021] only models a single person.
We extend it to multi-person cases. Specifically, for each image,
we first perform instance segmentation by an off-the-shelf method
[Li et al. 2020b] and assign each instance mask to the fitted SMPL
model. Then, a separate NeuralBody model is learned for each
person. Specifically, we only sample rays from the visible region of
the corresponding person and render each person separately. When
rendering the image from a novel view, we first generate the color
and depth of each person and then compose the colors according to
the depth values. 2) To compare with ST-NeRF [Zhang et al. 2021],
we implement the training procedure following their paper since
their training code is not released. Note that before the training,
they performed scene parsing by utilizing the patch-based multi-
view stereo technique [Luo et al. 2019] to generate coarse geometry,
which is not feasible in our sparse view setting. Therefore, we use

Table 1: Results of novel view synthesis on our Multi-Human
dataset. The numbers in brackets are the numbers of people and
objects in the scene, respectively. NB indicates NeuralBody [Peng
et al. 2021] and ST indicates ST-NeRF [Zhang et al. 2021]. The num-
bers on the left / right of the slash indicate the results without / with
masks to remove the background. Note that NeuralBody cannot be
evaluated without masks as it cannot model the background of the
scene.

PSNR ↑ SSIM ↑
Activities NB ST Ours NB ST Ours
Boxing (2p,0o) - / 27.53 24.33 / 27.89 25.45 / 30.12 - / 0.96 0.92 / 0.96 0.94 / 0.97
Basketball (2p,1o) - / 25.85 20.11 / 21.73 22.82 / 27.76 - / 0.95 0.86 / 0.91 0.90 / 0.96
Handstand (3p,0o) - / 26.46 25.38 / 30.80 27.35 / 33.10 - / 0.95 0.92 / 0.98 0.95 / 0.99
Juggling (4p,3o) - / 27.05 18.80 / 21.73 26.34 / 30.51 - / 0.94 0.83 / 0.91 0.94 / 0.97
Average - / 26.72 22.15 / 25.54 25.50 / 30.37 - / 0.95 0.88 / 0.94 0.93 / 0.97

our reconstructed SMPL models to provide the tracked bounding
boxes and use the instance segmentation given by [Li et al. 2020b]
as the label maps.

4.3 Results
Implementation Details. We adopt the Adam optimizer to train
our models. All the networks are trained together from scratch.
The learning rate starts from 5e-4 and decays exponentially in
iterations. We train our models on four NVIDIA GeForce RTX 3090
GPUs. The training on a multi-view sequence with eight views and
200 frames takes around 30 hours to converge. During inference, it
takes around 20s to render a 1920 × 1080 image and around 6s to
render a 960 × 540 image on a single GPU.

Results on the Multi-Human dataset. To evaluate the perfor-
mance on novel view synthesis of multiple entities, we compare our
method with NeuralBody [Peng et al. 2021] and ST-NeRF [Zhang
et al. 2021] on the Multi-Human dataset. Because NeuralBody is
not able to synthesize novel views of the background, we perform
experiments that remove the background using masks generated by
existing methods[Li et al. 2020b]. Experiments with the background
are also conducted. The quantitative results are shown in Table 1
and the qualitative results are shown in Fig. 7. Benefiting from the
prior knowledge from SMPL [Loper et al. 2015] model, both our
approach and NeuralBody can model human performers vividly.
However, NeuralBody suffers from artifacts in crowded scenes with
many human interactions due to the lack of layered modeling. On
the other hand, ST-NeRF can generate appealing results in simple
scenes, but cannot handle more complicated cases where many
performers and objects are involved. By proposing a novel layered
model with prior knowledge of human bodies, our approach is more
robust to complicated cases and outperforms all other methods.

Results on the ST-NeRF dataset. We also perform the quanti-
tative evaluation on the ST-NeRF dataset [Zhang et al. 2021] with
different input views for our method. The results are shown in Ta-
ble 2. The results of ST-NeRF are obtained by their released model.
ST-NeRF trained its model with 16 cameras and evaluated on the
same cameras, while we train our model with different numbers of
cameras and also evaluate on all 16 cameras. The results reveal that
we achieve comparable results if using half the number of cameras



Novel View Synthesis of Human Interactions from Sparse Multi-view Videos SIGGRAPH ’22 Conference Proceedings, August 7–11, 2022, Vancouver, BC, Canada

1

GT NB ST Ours GT NB ST Ours

Figure 7: Qualitative results on theMulti-Human dataset. NB means NeuralBody [Peng et al. 2021] and ST means ST-NeRF [Zhang et al.
2021]. We evaluate these methods both on training views and testing views, with 4 different actions. The blue boxes indicate training views
and the red boxes indicate testing views. NeuralBody successfully reconstructs human performers but has artifacts due to inaccurate masks.
ST-NeRF fails in some challenging cases as they do not leverage any prior knowledge of human body. Our approach produces photo-realistic
results and surpasses the baselines. Please refer to the supplementary video for more results.

GT SCHP NB ST Ours Ours (Mask)

Figure 8: Comparison on the soccer dataset, where SCHP means a pretrained segmentation network [Li et al. 2020b], NB means
NeuralBody [Peng et al. 2021] and ST means ST-NeRF [Zhang et al. 2021]. Both NeuralBody and ST-NeRF fail because of the inaccurate
instance segmentation given by SCHP. Our approach can render more realistic images and more accurate masks.

for training compared to ST-NeRF and significantly surpass it if
using all 16 cameras for training.

Results on the soccer dataset.We present the qualitative com-
parison of our method and other baseline methods on the outdoor

soccer dataset in Fig.8. We train the three models with all 8 views
and 200 frames. The results of NeuralBody have many artifacts
due to the wrong instance segmentations. The results of ST-NeRF
show that they cannot decompose the moving humans and the
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Table 2: Results of novel view syntheis and segmentation on
ST-NeRF dataset. View synthesis (PSNR, SSIM) and instance seg-
mentation (IoU) are evaluated. The numbers in brackets indicate the
numbers of views used for training. The results of ST-NeRF [Zhang
et al. 2021] are obtained by their released model, which are slightly
different from those in the original paper.

Walking Taekwondo
PSNR ↑ SSIM ↑ IoU ↑ PSNR ↑ SSIM ↑ IoU ↑

ST-NeRF (16v) 29.05 0.93 - 29.30 0.95 -
SCHP - - 96.62 - - 96.80
Ours (4v) 27.25 0.94 94.04 26.35 0.89 95.69
Ours (8v) 31.43 0.97 96.31 30.13 0.95 96.04
Ours (16v) 34.60 0.97 96.32 35.83 0.97 96.35

Figure 9: Effect of synchronization error. Left: blurring and
artifacts exist due to the synchronization error. Right: the pose-
guided synchronization corrects the error.

background correctly. Our method can render more realistic im-
ages and more accurate segmentations, even in the highly occluded
regions.

4.4 Ablation studies
We perform the ablation studies on our Multi-Human dataset to
validate the design choices in our system.

Effect of the synchronization. To demonstrate the effect of pose-
guided synchronization, we evaluate this component on ‘ballet’
sequence. Our model is trained given the SMPL parameters with
and without pose-guided synchronization. The results of a typical
frame with fast motion are provided in Fig. 9. Our pose-guided
synchronization can correct the error and render novel views with
fewer artifacts.

The qualitative validation of this component on pose reconstruc-
tion is provided in Fig. 4. We conduct an experiment with syn-
thetic data to quantitatively evaluate the synchronization module.
Specifically, we downsample a sequence from the public ZJUMo-
Cap dataset [Peng et al. 2021] by different factors and randomly
generate misalignment among views. If we set the factor to 2, our
method can reduce the mean synchronization error from 0.23 frame
to 0.03 frame. If we set the factor to 5, we can reduce the error from
0.41 frame to 0.04 frame.

Effect of the keypoints supervision. We train our model on the
‘juggle’ sequence with 8 views and 100 frames, which contains 4

w/o
Lkpt

w/
Lkpt

training view unseen view rendered instance

Figure 10: Effect of keypoint supervision. The keypoint super-
vision provides a good initialization for instance label learning and
prevent the convergence to local minima.

moving people and 3 moving balls. Humans can be seen from few
views. We train our model with and without Lkpt. Quantitatively,
the PSNR/SSIM of the test views are reduced from 26.26/0.92 to
22.78/0.87 with the keypoint supervision. Without the keypoint
supervision, the training is less constrained and possibly converges
to trivial solutions. For example, as shown in Fig. 10, the person
who holds the red ball is modeled as part of the background layer.

5 CONCLUSION
In this paper, we presented a novel approach for novel view synthe-
sis of a scene consisting of multiple human performers with close
interactions from a sparse set of calibrated views. The key innova-
tion is a new algorithm that is able to decompose the dynamic scene
into independently moving instances and reconstruct a neural rep-
resentation for each instance. As far as we know, this is the first
system that enables high-quality and editable free-viewpoint video
synthesis of multiple performers under close interactions from few
RGB cameras, which is also applicable for in-the-wild scenes.

Limitations and future work: Currently, the proposed approach
is limited to the setting of multiple human performers, only balls
as objects, a simple background and a calibrated camera array. As
future work, the system can be enhanced in several ways to handle
more general settings. First, previousworks on self-calibration [Huang
et al. 2021; Vo et al. 2020a] can be used to remove the need of cali-
brated camera rig. Second, more general objects can be handled by
tracking the 6DoF poses with object pose trackers. Third, if offline
scanning of the background is available, the rendering quality of
the background can be further improved.
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